
 Abstract- EEG-based Brain Computer Interfaces (BCIs) 
require on-line detection of mental states from spontaneous or 
surface Laplacian transformed EEG signals. However, accurate 
SL estimates require the use of many EEG electrodes, when 
local estimation methods are used. Since BCI devices have to use 
a limited number of electrodes for practical reasons, we 
investigated the performances of spline methods for SL 
estimates using a limited number of electrodes (low resolution 
SL). In this paper, recognition of mental activity was attempted 
on both raw and SL-transformed EEG data from five healthy 
people performing two mental tasks, namely imagined right and 
left hand movements. Linear classifiers were used including 
Signal Space Projection (SSP) and Fisherís linear discriminant. 
Results showed an acceptable average correlation between the 
waveforms obtained with the low resolution SL and those 
obtained with the SL computed from 26 electrodes (full 
resolution SL). Recognition scores for mental EEG-patterns 
were obtained with the low-resolution surface Laplacian 
transformation of the recorded potentials when compared with 
those obtained by using full resolution SL (82%).  

 
I. INTRODUCTION 

 

In the framework of the construction of a EEG-based Brain 
Computer Interface (BCI) it was suggested that EEG patterns 
can be better detected with EEG data transformed with the 
Surface Laplacian computation (SL) than with the 
unprocessed raw potentials [1]. However, accurate SL 
estimates require the use of many EEG electrodes, when local 
estimation methods are used [2,3].  These local estimation 
methods compute the SL at a certain electrode position on the 
base of the value of the surrounding nearest electrodes. This 
cause errors in the SL estimation at the electrodes placed at 
the boundary of the electrode grid, since their neighbors are 
not well defined [4,5]. The requirement of an high number of 
electrodes for an affordable estimate of the SL of the EEG 
distribution would prevent the application of SL estimates in 
a BCI device to be used by laypersons in real-life conditions, 
due to practical reasons, namely the time consuming 
procedure of the scalp electrode positioning. On the other 
hand, there exists a class of estimators of the surface 
Laplacian of the EEG potential distributions that is based on 
the use of a ìglobalî computational scheme, such as the 
spherical splines [6,7], in which the surface Laplacian at a 
certain electrode position depends from the values at all the 
other positions of the recording array. From these 
considerations, in  this paper we investigate the performances 
of global computational methods for the estimation of the SL 
from a limited number of electrodes, based on the spherical 
spline approach.  The working hypothesis at the base of the 

present work are i) the use of global interpolation SL 
estimates can produce reasonable SL waveforms even if a 
reduced number of electrodes are used (low resolution SL); 
ii) the use of low resolution SL waveforms for BCIs allows 
percentage of classifications of mental patterns statistically 
similar to those obtained with SL waveforms computed with 
the full recording array. In order to investigate the first issue, 
the ìgold standardî of the SL estimates obtained with the full 
recording array were compared to the spline-based SL 
estimations obtained on the same EEG recordings but using 
only 9 electrodes, uniformly disposed along the scalp in the 
position of the international 10-20 system. The second issue 
was addressed by comparing the recognition rates of the BCI 
system obtained using low-resolution SL waveforms with 
those obtained by the full resolution SL. Here, we report 
results in the recognition of mental patterns with two linear 
classifiers based on the Signal Space Projection (SSP) 
algorithm [8] and Fisherís linear discriminant functions 
[9,10]. The interest in the use of such linear classifiers for 
BCI is due to their simple training  and decision procedures. 
In fact, these procedures do not involve non-linear 
minimization procedures such as those necessary for the 
neural network classifiers already used in the BCI field [11-
13]. This of course was at the expense of the possibility to 
separate the input space with non linear discriminant 
functions. Recognition performances of the two linear 
classifiers on unprocessed and SL-transformed EEG data 
were computed from a group of five healthy people 
performing two motor-related mental tasks, namely imagined 
right and left hand movements. 
. 
 

II. METHODOLOGY 

 
A. Data Collection 

 
Five healthy subjects (three males and two females) 
participated voluntarily in experiments where they performed 
different  tasks, including the imagination of the movement of 
the right middle finger (RI) as well as the left middle finger 
(LI). The whole scalp was covered with 26 EEG electrodes 
placed onto standard locations according to the extension of 
the 10-20 international system. Sampling frequency was 
400 Hz, and signal was bandpass filtered between 0.1 and 
100 Hz before digitization. At the beginning of a recording 
session, subjects remained in a resting stateórelax with eyes 
openedófor 60 s. The EEG activity of this period is used as a 
baseline for subsequent analysis of the mental tasks. Then, 
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subjects started performing the task immediately after the 
operator instructed them to do so, and they maintained that 
task for more than 10 s. Every subject executed four times 
each task during the recording session, with a resting period 
of 10 s between each. After removal of time segments 
contaminated with EMG in the arms it remains about 40 
seconds of EEG signals for each task for every subject.  
 

B. SL estimations.  
 
Surface Laplacian computations were performed by using the 
spherical splines of order two, that were found to be adequate 
to describe the SL distributions of EEG data [14]. For each 
EEG recording two computations of the SL were performed. 
The first by using all the information of the electrode 
montage (full-resolution SL), while the second SL 
computation was performed by using only the data of the 
EEG potentials from nine electrodes (low-resolution SL). 
These nine electrodes were placed on the scalp surface 
according to the position  F3, Fz, F4, C3, Cz, C4, P3, Pz, P4 
of the International 10-20 System.  
 

C. Comparisons of the SL estimations 

 
The aim of the work was to investigate if the low-resolution 
SL estimation is able to produce relatively accurate SL 
estimates for the recognition of mental patterns. Hence, we 
used the correlation coefficient to measure the fit between the 
full resolution and the low-resolution SL waveforms in the 
nine electrodes selected. These comparisons were performed 
for all the EEG recordings performed in the five subjects 
analyzed. 
 

D. Data Pre-Processing.  

 
Time varying spectrograms of either full and low resolution 
SL-transformed EEG data by estimating the Power Spectral 
Density (PSD) of 2-second long epochs, each starting 1 s 
after the previous one were computed. The Welch 
periodogram algorithm to estimate the PSD was applied. 
Epochs are divided into segments of 1 s, with a Hann window 
of the same length applied to each segment, and 50 % 
overlapping between the segments. This gives a frequency 
resolution of 1 Hz. Finally, the power components are 
referred to the corresponding values of the estimated PSD of 
the baseline and transformed in dBói.e., we take the 
logarithm of the division. The spectral values were 
considered in a frequency band from 8 to 30 Hz, since those 
band was recognized to be useful for the recognition of 
mental pattern in previous papers [15,16].  
 

E. Signal Space Projection 
 

In the Signal Space Projection method a n-dimensional space 
is defined so that a ìmeasureî vector m(t), whose 
components are features extracted from incoming data, is 
represented in that space by a point. In the present case, the 
measure vector m(t) is the SL-transformed spectral EEG data 
in the frequency band of 8-30 Hz computing during the 
mental tasks analyzed. Given p vectors of n-dimensional 

ìpatternsî (s1, s2,Ö, sp), the p components of the ìactivationî 
vector: 

â(t) = S+⋅m(t) (1) 

weight the presence of each pattern in m(t). S+ is the 
pseudoinverse of the projection matrix S whose columns are 
the patterns (s1, s2,Ö, sp). The pattern describing one of the ith 
experimental tasks si is the mean of the selected components 
of the PSD computed while subject was imagining or 
performing the corresponding single hand movement (right or 
left) (training procedure). 
 

F. Fisher�s linear discriminant 

 
The same input pattern array )(tm  described before can be 

classified with a general linear discriminant function such as 

)()( tty mw′=  (2) 

where w is the array of unknown weights that defines the 
separation between classes of right imagined movement (RI) 
and left imagined movement (LI) in the input space. It is 
possible to define a projection that maximizes the separation 
between the classes. Fisherís discriminant [9,10] maximizes a 
function J(w) that represents the differences between the 
projected class means, normalized by a measure of the 
within-class scatter along the w direction. By defining sR and 
sL as the class means composed by the same spatial patterns 
used for the application of the SSP described before, and the 
average of the data set s, the function proposed J(w) is  
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where Rb is the between class covariance matrix given by 
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where the first summation runs over all the patterns 
belonging to the class describing the right mental imagery 
and the second over all the patterns belonging to the class 
related to the left mental imagery. J(w) is maximized when 

the weights are chosen proportionally to the )(1
w RL ssR −⋅− . 

Once obtained the weight vector w, the generic input pattern 
)(tm  were assigned to the class regarding the left mental 

imagery if the result of the projection s)(mw −⋅′ )(t  is 

greater than zero, and to the class related to the right mental 
imagery otherwise. 
 



G. Classification of mental patterns 

 
After PSD values were computed on full and low resolution 
SL-transformed EEG data, such values are then fed to into 
the linear classifiers used in this paper, based on the Signal 
Space Projection (SSP) and Fisher discriminant technique. 
These classifiers were then used for the separation of mental 
patterns related to the imagination of right (RI) and left (LI) 
hand movements. 
 

H. Cross validation.  

 
For recognition purposes, we applied to the low and full 
resolution SL EEG data the k-fold cross-validation, with k = 
8. Hence, we divided the EEG data set for each subject into k 
subsets of equal size. The SSP and Fisher linear discriminant 
projection were recomputed k times, each time leaving out 
one of the EEG data subsets from the training, and using the 
omitted subset to compute the recognition rate. Then, the 
results presented here are an average of the recognition rate 
obtained for each one of the k subset of EEG data not used 
for the SSP and Fisher estimation of the class means 
(training). 
 

I. Statistical analysis.  

 
A two way Analysis of Variance (ANOVA) was performed 
on the average values of the recognition scores obtained by 
the cross-validation technique. The first main factor was 
METHODS with two levels (SSP and FISHER) for the linear 
classifiers used in the present work, while the second main 
factor was SPATIAL FILTER, with two levels (LOWRESL 
and HIGHRESL) in which the different implementation of 
the computation of the surface Laplacian are compared (low 
and high resolution SL). No spherical correction has been 
used [17] for the ANOVA computation since the levels of the 
main factors are less than three.  
 

III. RESULTS 
 
Table 1 reports the average correlation values obtained 

between the unprocessed EEG waveforms, the low-resolution 
and full-resolution SL transformation of the EEG waveforms, 
in each time point acquired and on all the five recorded 
subjects. Correlation values were computed for the channels 
included in the computation of the low-resolution SL, namely 
F3, Fz, F4, C3, Cz, C4, P3, Pz, P4.  The first row of the Table 
1 shows the correlation values between the low-resolution SL 
and the full-resolution SL on each channel analyzed. Average 
correlation between low and full resolution SL-transformed 
EEG waveforms was 0.65, while was 0.36 between the 

unprocessed EEG and the low-resolution SL waveforms, and 
was 0.38 between the unprocessed EEG and the full 
resolution SL waveforms. Table 2 reports the recognition 
scores (in percentages) of the mental imagination of 
movements in the five subjects analyzed with both the linear 
classifiers used (SSP and Fisher) with data from low and full-
resolution SL. With   SSP using the low resolution SL EEG 
data the average recognition was of 81.3% while using the 
full resolution SL improves to 82.1%. The use of Fisher 
classifier applied to the low resolution SL EEG data produces 
60% or recognition score, while when the full resolution SL 
data was used this percentage arrives to 70.4%. The ANOVA 
demonstrated that the use of SSP improves significantly the 
recognition score with respect the use of Fisher discriminant 
method (METHODS main factor, F = 11.75, p<0.0266). 
Instead, the use of the low resolution SL data does not 
decrease significantly the recognition rate of the mental 
patterns with respect to the use of full resolution SL 
(SPATIAL FILTERS main factor, F = 3.79, p = 0.12). 
Furthermore, no interaction METHODS x SPATIAL 
FILTERS was found (F = 2.90, p = 0.16). 
 

TABLE II 
RECOGNITION SCORES FOR THE DETECTION OF RIGHT AND LEFT IMAGINED 
MOVEMENTS IN FIVE SUBJECTS. PERCENTAGES ARE OBTAINED WITH THE USE OF THE 
SSP LINEAR CLASSIFIERS WITH THE LOW RESOLUTION SL-TRANSFORMED EEG DATA 
(SSP LOWRES SL) AND WITH THE FULL RESOLUTION SL-TRANSFORMED EEG DATA 
(SSP FULLRES SL), AS WELL AS WITH THE FISHER LINEAR CLASSIFIER ON LOW AND 
FULL RESOLUTION SL-TRANSFORMED EEG DATA (FISHER LOWRES SL AND FISHER 
FULLRES SL, RESPECTIVELY) 

Subjects 
SSP 

LowRes SL 
SSP 

FullRes SL 
Fisher 

LowRes SL 
Fisher 

FullRes SL 

Cl 69% 88% 49% 57% 

Mj 97% 88% 57% 70% 

Ra 64% 60% 51% 57% 

Rb 87% 82% 78% 83% 

Ta 89% 92% 65% 85% 

Mean 81% 82% 60% 70% 

 
 

IV. DISCUSSION 
 

The results of this study suggested that in the BCI framework 
it is useful to compute the surface Laplacian by spherical 
spline also if a limited number of scalp electrodes are 
available or used for the analysis. In fact, the accuracy of the 
computed low-resolution SL seems to be not too far from that 
of the SL obtained by 26 scalp electrodes (average correlation 
coefficient 0.65 on all the subjects and on all the time points 
analyzed). It is relevant that the SL-transformed waveforms 
with both modalities (low and full resolution) showed a very 
low correlation with the unprocessed raw potentials (about 
0.38 for all SL-transformed potentials). More importantly, the 
average mental patterns recognition score over five subjects 
and for the SSP classifier obtained with the use of low-
resolution SL are close to that computed with the SL 
computed from all the 26 electrodes used (81.3% and 82.1%, 
respectively). Statistical analysis performed with the 
ANOVA demonstrated that the use of low resolution SL data 
does not decrease significantly the performance of the 
particular classifiers used (i.e. SSP or Fisher, p = 0.16). This 
result is promising for the realization of BCI devices that rely 

TABLE I 
FIRST ROW: CORRELATION VALUES BETWEEN THE LOW-RESOLUTION SL AND THE 
FULL-RESOLUTION SL (SL9-SL). SECOND ROW: CORRELATION VALUES BETWEEN THE 
LOW-RESOLUTION SL AND THE RAW POTENTIALS (SL9-P). THIRD ROW: CORRELATION 
VALUES BETWEEN THE SL ESTIMATION OBTAINED USING ALL 26 AVAILABLE 
CHANNELS AND RAW POTENTIALS (SL-P) 

 F3 C3 P3 Fz Cz Pz F4 C4 P4 

SL9-SL 0.41 0.82 0.59 0.5 0.9 0.91 0.37 0.78 0.57 

SL9-P 0.39 0.26 0.27 0.5 0.5 0.43 0.46 0.11 0.34 

SL-P 0.33 0.46 0.58 0.1 0.3 0.42 0.31 0.32 0.60 



on the use of a limited number of electrodes, also at the 
expenses of a minor recognition rates that maybe can be 
compensated by a relative larger training of the experimental 
subject. Such devices can compute the SL transformed EEG 
data by using global spline SL techniques with a modest loss 
of accuracy in recognition rates of mental patterns with 
respect to the case of in which a large array of electrodes is 
required. Statistical analysis also suggests the superiority of 
the Signal Space Projection as a method for the detection of 
mental patterns with respect the other linear discriminant 
technique, namely the Fisher linear discriminant. Compared 
to neural networks [10,12], linear classifiers are easier to train 
since they do not require non-linear minimization. With 
respect the recognition scores obtained here, other Authors 
have been able to perform successful recognition scores of 
patterns associated with the preparation of performed 
movements with linear classification technique based on the 
Common Spatial Patterns as high as 90% (CSP) [15] as well 
as non linear classifiers as high as 84% [11-13] in the BCI 
area.  

 In summary, results of the present work suggest that a 
BCI device based on linear classifiers and Laplacian-
transformed EEG signals computed from a limited number of 
scalp electrodes (nine) can be able to detect mental activity 
with a reasonable level of  percentage score. This open the 
avenue for more practical BCI devices that does not requires 
the use of a large set of electrodes. 
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